
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2020 1

Towards Sleep Study Automation: Detection
Evaluation of Respiratory-Related Events

Michal Borsky, Member, IEEE , Marta Serwatko, Erna S. Arnardottir, Jacky Mallett, Member, IEEE

Abstract— The diagnosis of sleep disordered breathing
depends on the detection of several respiratory-related
events: apneas, hypopneas, snores, or respiratory event-
related arousals from sleep studies. While a number of
automatic detection methods have been proposed, repro-
ducibility of these methods has been an issue, in part due
to the absence of a generally accepted protocol for evalu-
ating their results. With sleep measurements this is usually
treated as a classification problem and the accompanying
issue of localization is not treated as similarly critical. To
address these problems we present a detection evaluation
protocol that is able to qualitatively assess the match be-
tween two annotations of respiratory-related events. This
protocol relies on measuring the relative temporal overlap
between two annotations in order to find an alignment that
maximizes their F1-score at the sequence level. This pro-
tocol can be used in applications which require a precise
estimate of the number of events, total event duration,
and a joint estimate of event number and duration. We
assess its application using a data set that contains over
10,000 manually annotated snore events from 9 subjects,
and show that when using the American Academy of Sleep
Medicine Manual standard, two sleep technologists can
achieve an F1-score of 0.88 when identifying the presence
of snore events. In addition, we drafted rules for marking
snore boundaries and showed that one sleep technologist
can achieve F1-score of 0.94 at the same tasks. Finally, we
compared this protocol against the protocol that is used
to evaluate sleep spindle detection and highlighted the
differences.

Index Terms— sleep disordered breathing, event detec-
tion, snoring, evaluation protocol, sequence alignment
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AASM American Academy of Sleep Medicine
AHI Apnea-Hypopnea Index
AI Artificial Intelligence
C Confusion

DE Duration Evaluation
SDC Sórensen-Dice Coefficient
DL Deep Learning
JI Jaccard Index
FA False Alarm
FN False Negative
FP False Positive
H Hit

HE Hypothesis Event
M Miss

ML Machine Learning
PDE Presence and Duration Evaluation
PE Presence Evaluation
RE Reference Event

RERA Respiratory Event-Related Arousal
SDB Sleep Disordered Breathing

SI Snore Index
SSD Sleep Spindle Detection
TN True Negative
TP True Positive
κ kappa

I. INTRODUCTION

Sleep disordered breathing (SDB) is a condition that ranges
from primary snoring to obstructive sleep apnea. It is clinically
diagnosed by manually annotating a sleep study, for the pres-
ence of respiratory related SDB events such as snores, apneas,
hypopneas, or respiratory event-related arousals (RERAs) [1].
The prevalence, risk factors and costs associated with diagnos-
ing the various SDB forms [2] has fuelled work on automating
its diagnosis and severity assessment, and modern artificial
intelligence (AI) or deep learning (DL) solutions have attracted
significant attention for this purpose, as reviewed in [3], and
issues discussed in [4] [5]

Snoring is an important biomarker of SDB, but the severity
of snoring is often evaluated subjectively [6], [7], [8]. Tradi-
tional approaches to automatic snoring detection have relied
on handcrafted low-level temporal and spectral features and
shallow learning algorithms [9], [10], [11]. Their advantage
was that the features, and the model’s decision, were easy to
interpret, but this came at the expense of low discriminability
(mid 80% frame accuracy). Alternative approaches relied on
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low-level features and their descriptors [12], [13], [14] and
more recently DL algorithms [15]. These approaches had
a moderate-to-high discriminability (±90% frame accuracy),
but this came at the expense of interpretability. The latest
approaches have attempted to leverage the big data paradigm
in order to extract latent features using purely data-driven
approaches from a raw, or only very minimally processed
waveform, then feeding this into a sequence-based DL model.
Features can be extracted from the middle layers of an autoen-
coder [16], or occasionally as purely synthetic data generated
by a data augmentation technique [17]. Their main advantage
is that feature extraction is jointly optimized together with the
model parameters completely automatically.

In broader machine learning (ML) applications, object
detection is typically treated as a joint classification and
localization problem. This approach has been popularized
by several annual competitions held by the National Insti-
tute of Standards and Technology. The CLEAR 2006 [18],
CLEAR 2007 [19], and the Rich Transcription 2007 [20]
competitions spanned multiple ML fields and one of the main
outcomes was the adoption of spatial coincidence measures
for image recognition [21] [22], [23] [24], and temporal
coincidence measures for sound event detection [24] [25],
which was defined as a task to determine “the identity of
sounds and their temporal position in the signal [26]”. The
acoustic event detection problems shares with the detection of
respiratory-related events its reliance on time series signals,
which strongly suggests that their evaluation should be based
on temporal coincidence measures. A related problem in
EEG measurements, sleep spindle detection (SSD) has used
a temporal coincidence measure, the Jaccard index (JI), for
several years [27] [28] [29], [30]. A still prevalent trend in
snore detection, however, is to cut the time axis into fixed
length segments with arbitrarily placed boundaries, also called
frames, and attempt to determine simply if an event is present
within the segment or not. This practice devolves a detection
task into a classification problem as event localization then
becomes dependant on the granularity of the segmentation,
where segment lengths can range from tens of milliseconds
to several seconds, and can contain multiple events or only
a part of one. Relatively few approaches currently evaluate
their algorithm’s performance using temporally aware mea-
sures, [31], [15], [32], [33], [34].

This article proposes an evaluation protocol that is suited
to quantify an agreement of annotation of respiratory related
SDB events. It jointly assesses temporal localization and
classification performance. Our objective is to improve SDB
diagnosis, provide a method to asses reliability of labels for
supervised AI training, and to assist in the reproduction and
comparison of published AI solutions. We focus on snore
events but we believe the protocol is also applicable to apneas,
hypopneas, or RERAs. Our motivation is based on the fact that
while snoring is very prevalent in the general population, it
lacks a gold standard definition, and has received less attention
than apneas and hypopneas, whilst still being important in the
diagnosis of SDB disorders. To support our claims we apply
the protocol on manual annotations of over 10,000 snore events
marked by three experienced sleep technologists.

II. PROPOSED EVALUATION PROTOCOL

The proposed evaluation protocol associates a temporal
event overlap with a success, and non-overlapping events
and parts of events with a failure. The protocol relies on a
relative temporal overlap, instead of an absolute one, because
it discriminates against overly long and too short predictions
by taking the non-overlapping parts into consideration. It is
also more straightforward to threshold. Within this framework,
the event fractions can be thought of as standard confusion
matrix labels that were generalized to a continuous domain.
The true positive (TP) is equal to an overlap, and false negative
(FN) and false positive (FP) correspond to the non-overlapping
parts. The true negative (TN) is omitted because successfully
localizing ”nothing” is not the objective of event detection
and its inclusion would give a skewed impression of the
annotations’ matches. An m-class detection is an (m+1)-class
classification and localization problem in which the classes are
{1,...,M} or ”nothing”. This is a feature of event detection.
Since multi-class detection is very common in SDB settings,
e.g. scoring of multiple apnea and hypopnea types, the protocol
was designed for both single- and multi-class detection. We
first focus on the theoretical aspects of event detection, and
then describe the implementation of the discussed ideas.

A. Respiratory-Related Event Detection

It is assumed that the reference signal is an event sequence
Ref = (RE(1), ..., RE(K)) of length K produced by an
oracle, and the hypothesis is an event sequence Hyp =
(HE(1), ...,HE(L)) of length L that was a result of manual
or automatic annotation. Figure 1 illustrates several examples
of overlapping events, where the blue and red rectangles
bound hypothesis events (HEs) and reference events (REs)
respectively, with the hatched area showing their temporal
overlap. The question is: “Which of the examples represent a
successfully detected event?”. The answer requires considering
two separate issues. First, how many and which HEs can be
matched with a single RE and vice versa. We refer to this
as event alignment and there are two meaningful cases to
explore: one-to-one, and one-to-many. Secondly, what degree
of an overlap is required, which also branches into two cases:
any non-zero value, and a specific minimum value is required.

The primary consideration in determining which overlap
and alignment methodology is appropriate should be based
on the intended application. To achieve this we defined three
algorithms, each of which corresponds to one of the three ap-
plications in which the detection of SDB-related can assist in:
1) event number estimation, 2) total event duration estimation,
and 3) joint event number and duration estimation.

A secondary consideration is the nature of event definitions:
that is if there is a well defined start, end, and if there are
restrictions for a minimum or maximum duration. Here we
rely on the latest American Association of Sleep Medicine
(AASM) definitions in their manual for the Scoring of Sleep
and Associated Events v2.6. The essential issue with poorly
defined boundaries is that event placement becomes dependent
on the preferences of the scorer, which creates questions about
what is an acceptable inter- and intra-scorer match. Apneas
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Fig. 1. Examples of various events with differing onset, duration, and alignment. The blue rectangles bound reference events RE(k) while red
rectangles bound hypothesis eventsHE(l). The hatched area is the overlap. The question is which should be classified as a successful detection?

and hypopneas have well defined boundaries tied to signal
values, RERAs are well defined but not tied to signal values,
however at this time there is no definition for snoring. While
there is no minimum defined duration for snoring; apneas,
hypopneas and RERAs have a minimum defined duration of 10
seconds. None of these events have a definition for maximum
duration. Clearly events that are too short need to be filtered
out prior to the application of the protocol in order to conform
to minimum duration rules, and the absence of a maximum
duration condition generally plays no role, except perhaps in
detecting signal corruption. However what can be defined as
”too short” may be an open question. We believe these issues
are best handled outside the annotation evaluation.

To highlight how these considerations impact this protocol,
we examine each algorithm in terms of whether it has a
clinical or a research use, what defines a success and an error,
what is the correct approach to assess a match between two
annotations, and what information the evaluation provides.

1) Algorithm 1 - Evaluation of Event Number Estimation:
Clinical sleep medicine recognizes several indexes that mea-
sure the number of events per hour in order to diagnose SDB
severity. For example, the apnea-hypopnea index (AHI) is used
to diagnose sleep apnea severity, on a spectrum that labels
patients with an AHI < 5 as normal, and patients with an
AHI ≥ 30 as suffering from a severe disorder [35]. Counting
the number of snores or RERAs has an analogous use in
estimating the snore index (SI) [36] or respiratory disturbance
index. A precise event number estimation can be achieved
by correctly detecting the events’ presence, but their precise
boundary placement is of less importance. All events con-
tribute toward the index regardless of their duration. It is only
important that there is some overlap to confidently associate
REs to HEs. A typical example is the (HE(3), RE(3)) pair
shown in Fig. 1. The events have a low overlap but there is
little doubt the technologists aimed to score the same event.
Such an annotation can be used for unsupervised or semi-
supervised AI training for which it is expected the boundaries
are automatically localized during training. In general, this
evaluation is applicable whenever the objective is to detect
the presence of events irrespective of their duration.

An evaluation for the purpose of an event number estimation
is best done by using a one-to-one alignment and any non-

zero overlap. This penalizes placing multiple events within
a boundary of one, but does not penalize loose boundary
placement. All aligned events of the same type represents a
success. An error is an event that has no overlap with any other
event, aligned events of differing types, or an event that fails
to be aligned because its potential match was already aligned.
This algorithm is referred to as presence evaluation (PE).

2) Algorithm 2 - Evaluation of Total Event Duration Estima-
tion: The established practice of relying on the per hour
indexes for SDB diagnosis has its limitations. Authors in [37]
raise a concern current clinical practice does not distinguish
between events which last 1 second and 10 seconds, figu-
ratively speaking. For example, the literature agrees that the
AHI is a poor predictor of risks associated with SDB such
as cardiovascular problems [38] [39], quality of life [40],
overall mortality [41], and many others [35] [42] [37]. The
SI is also recognized as a weak predictor of disturbed sleep
structure [43], perceived annoyance [44], or its relationship to
the AHI [45], [46]. For this reason, scientists have started to
advocate for using complementary measures, one of which
is the ratio of total event duration with respect to sleep
duration [47] [48]. The proposed measures are based on an
assumption that adverse health outcomes may be positively
correlated with the relative duration of breathing cessations,
the resulting oxygen desaturation, or a combined apnea-
hypopnea duration. A precise total event duration ratio can
be estimated independently of the number of detected events.
Multiple events can still be placed within a boundary of one,
but their combined durations have to match and be perfectly
overlapped. Typical examples of this are the (RE(4), HE(4))
and (RE(4), HE(5)) pairs from the Fig. 1.

Total event duration evaluation is best done by using a one-
to-many alignment and any non-zero overlap. This penalizes
imprecise boundary placement but does not penalize if multi-
ple events are placed within a boundary of one. The duration
of an overlap in seconds between any two events of the same
type represents a success. An error is the duration of any non-
overlapping event part, an overlap between events of differing
types, or the duration of an unmatched event. This algorithm
is referred to as duration evaluation (DE).

3) Algorithm 3 - Evaluation of Joint Event Number and Du-
ration Estimation: The duration of individual SDB events is
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another alternative to per-hour indexes. For example, authors
in [41], [49] found that the durations of individual apneas
and hypopneas can predict an all-cause mortality better than
the AHI. Authors in [50] found that a composite sleep and
pulmonary phenotype that contained apnea and hypopnea du-
rations can predict hypertension. A precise individual event’s
duration can be estimated only by correctly detecting the
presence of all events within a study and accurately localizing
their boundaries. This annotation also has an important ML
utility as it can be used for supervised AI training.

Evaluation for the purposes of joint event presence detection
and duration estimation is best done by using a one-to-one
alignment and a specific minimum overlap. This setup penal-
izes an imprecise boundary localization and placing multiple
events within a boundary of one. Only aligned events of the
same type that overlap by a defined degree represent a success.
Errors are aligned events that do not pass the overlap threshold,
any aligned events of differing types, an event that fails to align
because its potential match was already aligned, or an event
that has no overlap with any other event. This algorithm is
referred to as presence and duration evaluation (PDE).

B. Implementation
The algorithms performs a series of passes over the scored

annotations independent of each other as follows: 1) calculate
the absolute overlap and identify event type match for all event
pairs, 2) find an optimal alignment between the REs and HEs
and associate aligned event pairs with decision labels, and
3) calculate chosen performance measures. Steps 1) and 3)
are shared between all algorithms and thus discussed outside
their descriptions. The protocol does not address cases when
multiple events naturally overlap but are supposed to be scored
separately, i.e. recordings of a subject and their partner snoring
at the same time, as this is a deeper problem. It also assumes
the events are of nonzero and finite duration and that the events
are chronologically ordered. We advocate for using hit (H),
miss (M), false alarm (FA), or confusion (C) decision labels
instead of the more traditional TP, TN, FP, and FN labels,
which are not suitable for multi-class event detection.

Algorithms performing the described protocol were im-
plemented in Python 3.7, and can be downloaded from the
Reykjavik University Sleep Institute website1. This repository
also contains example Ref and Hyp annotations derived from
both real-life and synthetic data and the algorithm outputs.

1) Step 1 - Calculate the Event Overlap and Identify Event
Type Match: The first step is to calculate the absolute overlap
in seconds, o(RE(k), HE(l)), between all event pairs by
using (1), and store the values in a matrix. Events that do
not overlap with any other event have their overlap set to 0.
The non-overlapping parts are referred to as a complement,
cmp(RE(k), HE(l)) and can be calculated using (2). The
Sørensen-Dice coefficient (SDC) is then calculated by using
(3) and the results are stored in a matrix. The on, off , and
dur subscripts represent an onset, offset and duration of an
event. The SDC is a measure of relative overlap. The output
is an overlap matrix where Ok,l = o(RE(k), HE(l)), an SDC

1Link will be made available upon publication.

matrix where SDCk,l = sdc(RE(k), HE(l)), and an identity
matrix where Ik,l = 1 if the event types match, and 0 if not.

o(RE(k), HE(l)) = max(0,min(RE
(k)
off −HE

(l)
off )

−max(RE(k)
on −HE(l)

on))
(1)

cmp(RE(k), HE(l)) = RE
(k)
dur − o(RE

(k), HE(l))

+HE
(l)
dur − o(RE

(k), HE(l))
(2)

sdc(RE(k), HE(l)) = 2 ∗ o(RE
(k), HE(l))

RE
(k)
dur +HE

(l)
dur

(3)

2) Step 2a - Duration Evaluation: The evaluation for the
purpose of total event duration estimation uses the O and
I matrices to directly assign event fractions with one of the
decision labels. It is not necessary to find an optimal alignment
because the application allows one-to-many alignment and any
overlap represents a success. A hit is equivalent to the overlap
between two events of the same type, an overlap between
different event types is a confusion, a complement to an RE is
a miss, and a complement to an HE is a false alarm. Flooring
the overlap at 0 ensures that the total H, M, FA, and C values
can be directly computed from the O and I matrices by using
equations (4), (5), (6), and (7) respectively.

H =

K∑
k=1

L∑
l=1

Ok,l ∗ Ik,l (4)

M =

K∑
k=1

(HE
(k)
dur −

L∑
l=1

Ok,l) (5)

FA =

L∑
l=1

(RE
(l)
dur −

K∑
k=1

Ok,l) (6)

C =

K∑
k=1

L∑
l=1

Ok,l ∗ (1− Ik,l) (7)

3) Step 2b - Presence Evaluation: The evaluation for the
purpose of event number estimation takes the SDC and I
matrices and finds an optimal event alignment that maximizes
the total SDC at a sequence-level. Our implementation relies
on finding all contiguous regions within the distance matrix. A
contiguous region is defined as the largest possible non-empty
set A of event indexes (k, l) such that [∀(k, l) ∈ A][∃(m,n) ∈
A] such that SDCk,l > 0, and SDCm,n > 0, and (k, l)
directly neighbours (m,n) along either of the axes, or (k, l) =
(m,n). The next step is to search within A for an index with
a maximum SDC value, save it into a set of aligned indexes
B, remove it from A, and then find and remove all competing
indexes from A. A competing index is defined as an index
that attempts to create an invalid alignment with any event
that has already been aligned. The search-and-remove process
continues until A is empty and the alignment moves on to
the next region. This divide-and-conquer approach simplifies
the problem because the exhaustive search-and-remove step is
performed on a region that is in most practical cases only a
small sample of all possible event pairs.
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The list B contains event pairs that are labelled as a hit
if their type matches and a confusion otherwise. Misses are
unaligned events from the reference sequence and false alarms
are unaligned events from the hypothesis. Their total number
can be calculated as M = (||Ref || − H − C) and FA =
(||Hyp||−H−C), where the ||.|| denotes the sequence length.

4) Step 2c - Presence and Duration Evaluation: The eval-
uation for the purpose of joint event presence and duration
estimation takes the SDC and I matrices and finds an optimal
event alignment in exactly the same manner as we proposed
for the PE algorithm. The event pairs in the alignment list
are labelled as a hit if their type matches and their sdc(.)
value exceeds the defined threshold, and as a confusion if
their type does not match but their the value still exceeds the
defined threshold. All unaligned events from the reference set,
or aligned ones that did not pass the threshold, are labelled as
a miss, and false alarms are labelled in an analogous fashion.
The recommended minimum SDC threshold is sdcthr = 2/3,
as it corresponds to a balanced overlap and complement.
The interpretation of this condition is that the annotations
are required to agree to a higher degree than to disagree.
Higher values means the overlap dominates, whereas lower
value means the complement dominates.

5) Step 3 - Calculate Performance Measures: The final step
is to calculate performance measures to quantify the perfor-
mance. The H,M,FA,C labels are well suited for calculating
the F1-score which is preferred by spindle detection and many
ML fields. Its main advantage is the independence of which
annotation is a reference and hypothesis and the omission of
the TN from the formula. Its main disadvantage is its per-
class definition, which makes its application for a multi-class
detection more cumbersome. For these reasons, we argue for
using the F1-score for a single-class detection or when both
annotations are conceptually a hypothesis.

An alternative is to define an error rate as a ratio of the total
error (M+FA+C) with respect to the reference length (H+
M+C). This measure is preferred by various natural language
processing fields [25]. Its main advantage is that one measure
quantifies an agreement even for a multi-class detection, but
the operator must decide which sequences are the reference.
It is worth mentioning that if there are more errors than the
reference length, then the error rate > 1.

Cohen’s kappa κc is a popular classification measure used
to quantify inter- and intra-raters agreement. Extending it
to a detection task requires solving the missing data issue.
The authors in [51] analyzed three variants of κc that can
deal with the issue: 1) remove all missing data, 2) use
Gwet’s kappa κg , and 3) use regular category kappa κr. The
problem with removing missing data is that the removed data
corresponds to misses and false alarms which leaves only hits
and confusions to quantify an agreement. If the task is a single-
class detection, then the κc is either 1 or 0. The κg suffers from
the same problem, but its value for a a single-class detection
is undefined ( 00 ). The κr appropriately treats data with one
missing value as disagreements, but it includes data with both
missing values into the agreement calculation, which skews
the results by identifying ”nothing”. Due to these reasons we
argue for using F1-score or error rates instead.

6) Final Notes: The crux of the protocol lies in using
the SDC as the temporal coincidence measure, the search-
and-remove optimization, and having three evaluation algo-
rithms for different applications. If precision and recall are
generalized to a continuous domain using the complement
definition (2) as an explicit sum of FP and FN fractions, then
a straightforward manipulation shows that sdc(.) corresponds
to an F1-score between the events at a continuous level. The
produced alignment represents a sequence-level maximum of
the F1-score. However, the same alignment would be obtained
if the protocol used JI, as SDC and JI can be expressed
using one generalized formula. If the F1-score is used as
the final performance measure, then the value we obtain by
using the protocol is the maximum that can be obtained while
maintaining the one-to-one alignment condition.

The difference between this protocol and the SSD is that
SSD finds an optimal alignment on an event-by-event basis,
which leaves a possibility that some events will remain un-
aligned when compared to the sequence-level alignment we
propose. As a consequence, all performance measures obtained
by using the SSD will be equal or lower than the values
obtained by using our approach. SSD has no equivalent to the
DE algorithm. Also, we argue that using the 0 threshold is the
correct setup to perform event presence detection evaluation,
as opposed to using a non-zero threshold.

III. SNORING ANNOTATION AGREEMENT ANALYSIS

This protocol can be applied to a dataset that contains at
least two concurrent annotations of SDB events. The National
Sleep Research Resource (NSRR) is a public repository of
sleep studies [52] but none of the studies that are made
available meet these criteria. The Wisconsin Sleep Cohort [53]
contains singular annotation of SDB events. The Munich-
Passau Snore Sound Corpus [54] contains re-scored segments
of individual snores that was designed for the purpose of
identifying obstructions location and not snore events detec-
tion. Consequently, the protocol is at first applied on a toy
dataset to demonstrate its utility and then on internal datasets
of snore events to assess the reliability of snores annotations.
Regardless, we think that the protocol is also applicable to
apneas, hypopneas, and RERAs. The agreement is quantified
using the F1-scores and error rates. The PDE threshold was
set to sdcthr = 2/3, which corresponds to the JI threshold
of jithr > 1/2, which was used for the SSD. In addition, we
assess the agreement using the SSD approach under equivalent
conditions to compare the two protocols. The observed snore
reliability assessment is compared against reported reliability
of annotating sleep spindles using the Montreal Archive of
Sleep Studies (MASS) [55] and the DREAMS corpus [56].

A. Results and Discussion
1) Example Toy Data: Fig. 2 illustrates the protocol’s behav-

ior on the examples from Fig. 1. The plot contains the SDC
matrix and the decision labels for the PE and PDE algorithms
and their equivalents by using the SSD protocol. The rows
correspond to REs, the columns to HEs, and the overlapping
events have their cells highlighted in yellow. The simplified
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Fig. 2. Demonstration of the protocol on the examples from Fig. 1.
The figure plots the distance matrix with non-zero values highlighted.
Decision labels for the presence (PE) and presence and duration
evaluation (PDE) are below, together with their sleep spindle detection
(SSD) equivalents. The hits are in red and use the (k, l) notation. The
misses and false alarms are in green and blue, and use the sparse index
notation, (k, ) or (, l), which reflects a lack of an event to align with.

TABLE I
Agreement between the examples from the Fig. 1. Calculated using the
detection (DE), presence (PE), and presence and detection evaluation

(PDE) as per this protocol and sleep spindle detection (SSD).

DE PE PDE
F1 error F1 error F1 error

This protocol 0.74 0.49 0.92 0.16 0.46 1.16
SSD - - 0.76 0.5 0.46 1.16

(k, l) notation is used for brevity. The hits are colored in red
and marked as (k, l). The misses and false alarms are in green
and blue, and use a sparse marking (k, ) and (, l), that reflects
the lack of an event to match with. It was assumed all events
are of the same type. Table I summarizes the F1-scores.

The main difference occurs in the region {(5, 6), (6, 6),
(6, 7)} for the PE. Both approaches will select (5, 6) at first
and then block (6, 6) to adhere to the one-to-one rule. Our
approach will then select (6, 7) despite sdc(6, 6) > sdc(6, 7),
since it maximizes the sequence-level F1-score. The indexes
(5, 6) and (6, 7) are labelled as hits, (6, ) is a miss, and the PE
F1-score = 0.92. On the other hand, the SSD will eliminate
(6, 7) because sdc(6, 6) > sdc(6, 7). The index (5, 6) is
labelled as a hit, (6, ) is a miss, (, 7) is a false alarm, and
the PE F1-score = 0.76.

2) Snore Annotation based on AASM: This analysis data
comes from a dataset which was previously used to compare
sensors in terms of their suitability for annotating snoring [57].
The study was approved by the National Bioethics Committee
and Data Protection Agency of Iceland, protocol no. 10-048,
on June 26, 2018. The studies were annotated by two sleep
technologists, who are referred to as ”SA” and ”SB”, and who
marked the onset and offset of snore events in the same 2-h

TABLE II
Summary of the number of annotated snore events, their mean and
variance (µ± σ) duration (s), and the total period duration for the

SA-18h, SB-18h, SB-4h.1, and SB-4h.2 annotations.

SA-18h SB-18h SB-4h.1 SB-4h.2
snore events 6831 8106 2720 2754
snore dur. (s) 1.2±0.8 0.9±0.5 1.0±0.5 1.3±0.5

period dur. 18h 3h 58m

TABLE III
An inter-scoring agreement between the SA-18h and SB-18h

annotations. Calculated using the detection (DE), presence (PE), and
presence and detection evaluation (PDE) as per this protocol and sleep

spindle detection (SSD).

This protocol SSD
subject DE PE PDE 0 1/2

1 0.77 0.98 0.84 0.98 0.84
2 0.51 0.51 0.35 0.51 0.35
3 0.54 0.58 0.49 0.58 0.49
4 0.85 0.92 0.81 0.92 0.81
5 0.73 0.58 0.50 0.58 0.50
6 0.52 0.90 0.39 0.89 0.39
7 0.95 0.9 0.88 0.91 0.88
8 0.96 0.96 0.93 0.96 0.93
9 0.97 0.97 0.96 0.97 0.96

avg(.) 0.74 0.88 0.74 0.88 0.74
avg(1,4,7,9) 0.87 0.96 0.88 0.96 0.88

long segments for 10 patients. The article reported an inter-
scorer’s correlation of 0.966. The sleep technologist SB then
annotated different, 1-h long segments from 5 patients twice,
and the reported intra-scorer correlation was 0.99.

One subject recorded only 15 snore events and was removed
from the analysis, leaving 9 and 4 subjects to calculate an
inter- and intra-scorer’s agreement. The total duration of the
2-h long segments from 9 subjects was 18h, and this analysis
period is referred to as ”18h”. The total duration of the 1-h
long segments from 4 subjects was 3h 58m, but to distinguish
between the first and second pass, these periods are referred
to as ”4h.1” and ”4h.2”, respectively. To fully identify the
annotator and the analysis period, the article refers to them
as ”SA-18h”, ”SB-18h”, ”SB-4h.1”, and ”SB-4h.2”. Their
detailed information is summarized in Table II.

The results for the inter-scorer’s agreement analysis between
the SA-18h vs. SB-18h annotations is summarized in the
Table III. The average F1-score for subjects {1,4,7,9} is
included to allow comparison against the SB-4h.1 vs SB-4h.2
intra-scoring agreement analysis which was limited to only
these subjects. The PE F1-score ranged from 0.51 to 0.98,
indicating there were significant differences in the acoustic
representation of snore events among subjects and their per-
ception by the technologists. Overall the mean PE F1-score =
0.88, which indicates that current snore annotation practices
and definitions are sufficient for counting snore events. The
average DE and PDE F1-score was 0.74 which means there
was a lower agreement on boundary placement and it opens a
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question of how useful these annotations are for event duration
estimation. There was also a small difference between the PE
F1-scores between this protocol and SSD for subject 6, which
demonstrates that the discussed difference in the alignment
methodology influences real annotations.

TABLE IV
An intra-scoring agreement between the SB-4h.1 and SB-4h.2

annotations. Calculated using the detection (DE), presence (PE), and
presence and detection evaluation (PDE) as per this protocol and sleep

spindle detection (SSD).

This protocol SSD
Subject DE PE PDE PE PDE

1 0.68 0.99 0.61 0.99 0.61
4 0.92 0.94 0.90 0.94 0.90
5 0.87 0.92 0.85 0.92 0.85
9 0.84 0.96 0.91 0.96 0.91

avg(.) 0.81 0.96 0.80 0.96 0.80

The intra-scorer’s analysis between SB-4h.1 and SB-4h.2
is summarized in Table IV, using the same methodology as
before. The primary observation was that employing one sleep
technologist did not improve the snore annotation consistency.
The mean intra-rater’s F1-score for the PE was 0.96, which
was exactly the same as the inter-rater’s for these subjects.
The mean F1-scores for DE and PDE decreased.

3) Snore Annotation based on Internal Rules: The previ-
ous analysis indicated that a lack of a definition of snore
events in the AASM manual negatively affected the boundary
placement consistency and decreased the DE and PDE scores.
Our secondary concern was that human scoring does not
operate at a granularity of hundreds of microseconds, when
processing audio signals, as machines are able to. To take
these concerns into consideration and to explore the ceiling
for human performance, a two-phase annotation protocol with
consistent annotation rules was carried out. Both phases in-
cluded re-annotating the previous dataset with more precise
annotation rules, with a 6 months gap in between. A snore
event was defined as in [57]; a sound which is synchronous
with breathing, protuberant from the background and has an
audible oscillatory component. This definition was congruent
with definitions that focus on snoring acoustics [58], [59] and
snoring mechanics [60], [61]. All snore events were annotated
cycle by cycle and given the same label, regardless of whether
they contained only the inspiration or expiration part, or
spanned the whole breathing cycle. All non-snore events were
excluded, e.g. catathrenia events (groaning), loud breathing or
other environmental sounds. Snore events were annotated by
looking at a 10 (s) long window, but when necessary a 1 (s)
long window was used, from the onset of the oscillation sound-
wave towards the end. In case of mixed events, i.e. a mixture
of loud breathing and a snore event, only a distinct snore wave
was annotated. Therefore, much more attention was paid to the
event onset and offset than in the previous scoring of the data.

In phase 1, a snore event saturated hour was chosen from
each sleep study and the events were annotated according
to the aforementioned rules. Six months later, in phase 2,
one study was randomly chosen as a training study (subject

5) and the remaining 8 sleep studies were annotated again.
The sleep technologist was blinded to the previous annotation
while re-annotating. The total amount of annotated data was 8h
53m. The technologist for this task is denoted as ”SC”, and
the analysis periods are referred to as ”8h.1” and ”8h.2” to
distinguish between the phases. The same naming convention
was used to distinguish between the annotations: ”SC-8h.1”,
”SC-8h.2”. Table V summarizes the annotation statistics.

TABLE V
Summary of the number of annotated snore events, their mean and
variance (µ± σ) duration (s), and the total period duration for the

SC-8h.1 and SB-8h.2 annotations.

SC-8h.1 SC-8h.2
snore events number 5597 5912
snore dur. µ± σ (s) 1.2±0.6 1.0±0.5
analysis period dur. 8h 53m

The intra-scoring agreements are summarized in the Ta-
ble VI. The sleep technologist was much more consistent
in annotating snore events boundaries. The mean DE F1-
scored improved to 0.9. The PE F1-score improved to 0.94
and the PDE F1-score to 0.88. In general, values around 0.9
are considered a very good match, indicating these annotations
were suitable for all discussed clinical and research related
applications. An in-depth look on a per-subject basis revealed
a notable trend for Subject 1. The sleep technologist achieved
nearly perfect PE (F1-score = 0.99) but only mediocre DE
(F1-score = 0.79), which meant that there was no doubt
which events were snore events and which were not, but their
boundaries were much harder to localize consistently.

B. Snore Index Estimation and its Variability

The analyses demonstrated that sleep technologists achieved
various levels of consistency in identifying presence of snore
events. To explore the F1-score relation to an annotation
quality for snore event counting, the SI was calculated for
each individual annotation. In addition, the index was cal-
culated from the consensual annotation (Cons.), when only

TABLE VI
An intra-scoring agreement between the SC-8h.1 and SC-8h.2

annotations. Calculated using the detection (DE), presence (PE), and
presence and detection evaluation (PDE) as per this protocol and sleep

spindle detection (SSD).

This protocol SSD
Subject DE PE PDE PE PDE

1 0.79 0.99 0.79 0.99 0.79
2 0.78 0.84 0.78 0.84 0.78
3 0.97 0.97 0.97 0.97 0.97
4 0.97 0.97 0.97 0.97 0.97
6 0.80 0.84 0.80 0.84 0.80
7 0.86 0.88 0.86 0.88 0.86
8 0.93 0.95 0.93 0.95 0.93
9 0.91 0.97 0.91 0.97 0.91

avg(.) 0.90 0.94 0.88 0.94 0.88
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TABLE VII
The snore index (-/h) estimation based on each individual annotation and their consensus (Cons.), when only the repeatedly identified events

counted towards the consensus index calculation. Each annotation has its onset summarized.

Subject
1 2 3 4 5 6 7 8 9

onset 01:00 01:00 01:00 01:00 01:00 01:00 01:00 01:00 01:00
SA-18h 761 346 436 382 134 575 293 436 689
SB-18h 760 131 188 337 55 587 250 426 681
Cons. 749 122 184 334 55 526 247 414 669
onset 00:44 - - 23:44 - - 01:30 - 05:14

SB-4h.1 896 - - 635 - - 511 - 805
SB-4h.2 895 - - 703 - - 487 - 770
Cons. 895 - - 630 - - 463 - 764
onset 00:44 01:39 / 03:51 01:50 / 05:39 23:44 - 02:22 / 07:05 01:30 / 03:29 02:16 / 04:50 05:14

SC-8h.1 895 329 577 703 - 592 454 748 770
SC-8h.2 894 395 565 709 - 721 560 743 785
Cons. 894 304 559 692 - 557 449 714 756

the repeatedly identified events were counted. The question
was how significant were the differences. The values for each
subject and annotations are summarized in Table VII.

Annotation quality is often compared using the SI statistics
which have confusing interpretation value. The proposed pro-
tocol accumulates misses and false alarms together. Operating
directly on a per-hour index assumes the errors have a com-
pensatory quality where misses and false alarms cancel each
other out. Achieving a perfect intra- or inter-score becomes
a matter of making an equal number of errors, rather than
not making any. Such an analysis reports on a systemic bias
of one sleep technologist over another, and not on an agree-
ment in identifying event presence. This behavior was best
demonstrated by looking at SA-18h and SB-18h annotations
for Subject 6. The sleep technologists achieved a near perfect
SI match (575 vs. 587 snores/hr), but the number of repeatedly
marked events was only 526. This means a SI calculated from
the consensus was 8-10% lower then from either individual
annotation, and 9% lower than their mean. Likewise, their
disagreement was higher then the snore index variance would
imply. The example practically demonstrated that the proposed
protocol is superior to per-hour index variability analysis.

Table VII contains the analysis onset for each subject and
annotation. All ”18h” periods started at 1AM, but the periods
for ”4h” were randomly chosen, and the periods for ”8h”
analysis were chosen based on event saturation, sometimes
even splitting the period into two. The table reports on both
timestamps in these cases. It was likely the observed differ-
ences across annotations for the same subject were affected
by a natural event saturation during the night, and not only
due to sleep technologist inconsistencies.

Spindle detection provides a good reference to compare
the observed reliability results against. The F1-scores reported
in the literature range from 0.61 to 0.67 for inter-scoring
[28], [27], [29], and 0.72 for intra-scoring [28]. The cited
works use a very low Jaccard threshold jithr = 0.2, which
corresponds to the SDC threshold sdcthr = 0.28. Our analysis
used sdcthr = 2/3. We observed F1-scores of 0.74 in the inter-
scoring setup, and after we created additional snore annotation

rules, the values increased to 0.88 for intra-scoring. There were
multiple likely factors at play that explain the superior intra-
scoring agreement. First, there is a common recognition of
what snoring sounds like, which ameliorates its lack of an
exact definition. Second, the sleep technologist could reinforce
the visual cues by a simultaneous listening, whereas spindle
annotation relies on visual cues only. Third, an acoustic signal
recorded in a lab environment is rather clean, whereas EEG
is by nature a more noisy signal.

IV. CONCLUSION

This paper proposes a protocol to evaluate an agreement
in the task of detecting SDB events in a sleep study. While
the field of SDB event detection is well researched, it lacks
a generally accepted protocol to compare competing AI solu-
tions or to calculate agreement between human scorers. The
article also studied the reliability of manual annotation of
snore events in private datasets that were annotated according
to the AASM manual and internally developed rules. We
demonstrated that a lack of gold standard rules for annotating
snore events has a relatively small effect on the ability of
human scorers to detect the presence of snore events. The
absence of rules however, had a more pronounced and negative
effect on localizing event boundaries. We also demonstrated
that trained sleep technologists can achieve much better intra-
and inter-scorer’s agreement in annotating snore events than
is reported for annotating sleep spindles.

Even if many events will likely always remain in the ”gray
zone”, the protocol offers opportunities to study human-to-
human scoring consistency, to determine what is an acceptable
AI performance, or what ML architectures are suitable to
automate the task of sleep study annotation. We recognize that
a low number of subjects is a limitation of our analysis. The
number of annotated events is over 10,000. Sleep scoring is
an extremely time intensive activity when done manually, we
hope that this algorithm will assist other sleep centres with
their development of automated analyses, and this will also
allow the algorithm to be tested on more subjects gathering
more data on its performance.
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