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Clinics care points 

- In-lab polysomnography is the gold standard method but suffers from high costs, 

limited availability, and laborsome manual analysis. 

- Home recordings are well-suited especially for screening purposes and follow-up 

monitoring. 

- In the future, simpler home recording devices alongside fully automatic analysis 

have massive potential for sleep disorder diagnostics 

- Current machine learning-based automatic scoring methods can already be 

considered as accurate as manual scoring; however, more comprehensive 

validation in heterogeneous populations is needed before widespread clinical 

adoption. 

- Home recordings cannot fully replace the in-lab polysomnography in complex 

situations and when multiple sleep disorders are suspected. 
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Synopsis (max 100 words) 

Sleep disorders form a massive global health burden and there is an increasing need for 

simple and cost-efficient sleep recording devices. Recent machine learning-based approaches 

have already achieved scoring accuracy of sleep recordings on par with manual scoring, even 

with reduced recording montages. Simple and inexpensive monitoring over multiple 

consecutive nights with automatic analysis could be the answer to overcome the substantial 

economical burden caused by poor sleep and enable more efficient initial diagnosis, 

treatment planning, and follow-up monitoring for individuals suffering from sleep disorders. 

Key points (3-5 bullet points) 

• Sleep disorders are constantly increasing in prevalence inducing a massive burden to 

the health care systems. As the current gold standard polysomnography is expensive, 

requires substantial labor, and has limited availability, there is an increasing need for 

simple home-based recordings. 

• Advancements in machine learning and artificial intelligence allow automatic analysis 

of sleep recordings even using reduced measurement setups without compromising 

diagnostic accuracy. These approaches are already reaching accuracy on par with 

manual scoring by clinical experts.  

• There is immense potential in using wearable sensing solutions for screening and long-

term monitoring of sleep disorders, and their use would be a highly valuable addition 

to diagnostics. Combining simple screening devices with automatic analysis would 

enable cost-efficient monitoring over multiple nights which would, in turn, minimize 

the first-night effect. 
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• The pulse oximeter is one of the most potential devices to act as an efficient and 

accurate stand-alone screening device. Photoplethysmogram and blood oxygen 

saturation measured with a finger pulse oximeter have already been successfully used 

to identify sleep stages and assess the severity of obstructive sleep apnea. These 

automatic analysis approaches could already be easily adapted to all home-based 

sleep recordings.  

• In complex cases or when multiple sleep disorders are suspected, simplified recording 

setups with a reduced electroencephalography montage, pulse oximetry, leg 

electromyography, and respiratory measurements at home could be used.  

Keywords 

sleep disorders, home sleep recordings, machine learning, deep learning, 

electroencephalography, photoplethysmography, wearables, sensors, medical devices 
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Introduction 

Sleep disorders and inadequate sleep are quickly becoming a substantial global health 

problem. Poor sleep induces a major economical and social burden cost due to direct health 

care costs, loss of productivity, and increased risk of accidents and traffic crashes1. 

Meanwhile, sleep disorders have an increasingly high prevalence. Obstructive sleep apnea 

(OSA) alone is estimated to affect hundreds of millions of individuals2, whereas insomnia 

symptoms are prevalent in up to half of the adult population, with 10 – 15% of the population 

also suffering from daytime impairment3. It is evident that efficient diagnostic practices for 

sleep medicine are crucial. Due to the heavy patient inflow and the limited capacity of sleep 

laboratories, home-based recordings will most likely have an increasing role in the future. 

The current gold standard in diagnosing sleep disorders and studying sleep is the type I 

polysomnography (PSG) conducted at a specialized sleep laboratory. PSG records the 

electrical activity of the brain (electroencephalography, EEG), eye movements 

(electrooculography, EOG), chin and leg muscle tone (electromyography, EMG), and cardiac 

function (electrocardiography, ECG). In addition, respiratory effort, airflow, blood oxygen 

saturation, and sleeping position are recorded alongside additional video and audio 

recordings4,5. The signals commonly recorded in modern PSG, the sensors used to record 

these signals, and the rationale behind the signal inclusion are presented in Table 1. 
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Table 1. The signals included in modern polysomnography, the commonly used sensor 
types, and the main diagnostic use of the recorded signals4–8 

Recording Sensor types Main diagnostic use 

Airflow 
Thermistor,  

nasal pressure sensor 
Respiratory event scoring  

Audio Microphone Breathing and snoring sounds 

Blood oxygen 

saturation 
Pulse oximeter  Desaturation event scoring  

Body position Accelerometer Identify positional sleep apnea 

Electrical activity of 

the brain 
Cup electrodes Sleep stage and arousal scoring 

Eye movements 
Adhesive electrodes, cup 

electrodes 
Sleep staging 

Cardiac function Adhesive electrodes Heart rate 

Muscle tone and  

leg movements 
Adhesive electrodes 

Sleep staging and periodic limb 

movements  

Respiratory effort 
RIP-belts, 

piezoelectric sensor 

Differentiating central, mixed, and 

obstructive apneas 

Video  Video camera 
Investigating behavioral patterns and 

identifying issues in recording 

RIP=respiratory inductance plethysmography 

 

Although type I PSG is the most comprehensive diagnostic method and can be especially 

useful in the differential diagnosis when multiple sleep disorders are suspected,  it has several 

major limitations and shortcomings. One of the primary drawbacks is high cost. A sleep 

laboratory staffed with professional sleep technologists is required to conduct the PSG, 

further increasing complexity and cost9. PSG also requires substantial labor from professional 

sleep technologists as the electrodes and measurement devices must be placed meticulously, 
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the participant must be supervised during the night, and the manual scoring of the recordings 

is a highly time-consuming process 10.  

Moreover, PSG may not always be fully representative of normal sleep and can suffer from a 

considerable first-night effect where the unfamiliar environment and complex PSG 

equipment causes discomfort and stress disturbing normal sleep11,12. The first night effect is 

very difficult to eliminate completely even if the sleep laboratory is set up in a more 

comfortable and less clinical environment, such as in a hotel12. Possibly the most effective 

solution for reducing or even eliminating the first-night effect is to record sleep for multiple 

consecutive nights. The benefits of recording sleep over multiple nights are also supported by 

the fact that there exists significant night-to-night variation in sleep and the severity of some 

common sleep disorders11,13,14. Therefore, it is clear that one recording night for PSG may not 

sufficiently catch all sleep disorders nor provide a good representation of a typical night. 

Nevertheless, due to above mentioned practical constraints, only a single monitoring night is 

almost exclusively used in clinical sleep medicine12. 

Compared to the full in-laboratory PSG, simpler ambulatory devices are also available for use 

in sleep diagnostics6. The Task Force of the Standards of Practice Committee of the American 

Sleep Disorder Association (ASDA) has defined four monitor types for sleep recording5. The 

requirements for each category are presented in Table 2. Type I recording is a standard 

attended in-lab PSG that is recommended for most sleep studies and often required to 

diagnose complex sleep disorders5,15. Type II recording refers to a full PSG setup conducted 

unattended in a home environment often missing the video and audio recordings. Type III 

device is an unattended polygraphy device used to diagnose some sleep disorders, e.g. OSA. 

However, it cannot be used to fully replace PSG due to the lack of EEG preventing accurate 
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sleep staging and detecting arousals from sleep10. Most recording devices that are accepted 

to be used for sleep disorder diagnosis are of types I-III. Only a few type IV devices, required 

to record a single channel, are in diagnostic use. 

The main advantage of home-based measurements is the capability of the studied individual 

to sleep in a familiar environment. Moreover, home recordings do not require healthcare 

practitioners for active monitoring thus providing a more cost-efficient option over an in-lab 

PSG15. However, ambulatory devices have their limitations as they generally cannot be used 

fully independently and thus still require at least some training and set up by a professional. 

For example, a type II PSG usually requires a sleep technologist to place at least the EEG 

electrodes and set up the device which takes approximately one hour of time10. Type III 

devices may be equipped by the studied individual and only guidance is required from 

healthcare professionals. However, mistakes made by the patients and incorrect use of the 

devices in unattended conditions lead to greater failure rates and poorer signal quality 

compared to full in-lab PSG15,16. This in turn facilitates an increased need for retesting and 

therefore mitigating some of the cost benefits of the ambulatory devices over full in-lab 

PSG15,16. Ambulatory devices also suffer from a higher rate of data loss which can lead to 

inconclusive results and further necessitate retesting17. 
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Table 2. The different sleep monitor types as defined by the Task Force of the Standards of 
Practice Committee of the American Sleep Disorder Association5,8,18. The table presents 
minimum requirements; however, many modern sleep monitors record more signals.  

Sleep study type 
Diagnostic 

purpose 

Minimum 

number 

of signals 

Required signals 

Type I in-

laboratory PSG 

Various sleep 

disorders 
8 

EEG, EOG, chin EMG, ECG, airflow, 

respiratory effort, body position, 

oxygen saturation 

Type II unattended 

PSG 

Various sleep 

disorders 
7 

EEG, EOG, chin EMG, heart rate, 

airflow, respiratory effort, oxygen 

saturation  

Type III 

unattended 

polygraphy 

Mainly sleep 

apnea 
4 

respiratory effort, airflow, heart 

rate, oxygen saturation  

Type IV 

unattended 

recording 

Mainly 

monitoring 
1 

respiratory effort or airflow or 

oxygen saturation  

ECG=electrocardiography, EEG=electroencephalography, EMG=electromyography, 

EOG=electrooculography, PSG=polysomnography 

 

The classification of sleep monitoring devices was done over two decades ago and it is still 

the current official specification5. However, there have been massive advancements in 

sensor, signal analysis, and recording technology after this specification. Therefore, there can 

be a wide range in capability between devices of the same type. It should also be noted that 

AASM has not included this sleep monitor type classification in their scoring manual and only 

separates between in-lab PSG (type I) and home sleep apnea test (HSAT) devices (types II-IV). 
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It is clear that simpler, more affordable, and fully automatic devices, diagnostic methods, and 

analysis tools are needed in sleep diagnostics. These new approaches could simultaneously 

mitigate some of the shortcomings of current diagnostic methods while allowing more 

widespread screening and diagnosis. This would in turn enable treatment and its follow-up 

monitoring for many who are currently suffering from a sleep disorder but are not diagnosed 

due to waiting times or limited diagnostic resources. Overall, current technical innovations 

could be exploited to streamline the diagnostic process and move towards the next-

generation self-applied home sleep recordings. Mainly, the advancements in simpler 

wearable sensors and automated analyses based on artificial intelligence (AI), or more 

precisely machine learning and deep learning, could allow simpler and more affordable sleep 

recordings in the future. Below, we present our views on the future of sleep recordings based 

on the most recent advancements in sensing technology and AI-based analysis methods.  

Recording and scoring of sleep stages 
 

Sleep staging is traditionally performed by manually reviewing the PSG recordings in 30-

second segments, called epochs. Each epoch of sleep is scored to one of five stages: Stage W 

(wakefulness), Stage R (rapid eye movement sleep, REM), and three non-REM (NREM) Stages 

N1, N2, and N3. The most common characteristics of each sleep stage are presented in Table 

3. Identifying sleep stages is mainly based on EEG, EOG, and chin EMG signal features, 

patterns, and waveforms. The gold standard of identifying sleep stages requires recordings of 

three EEG channels (F4-M1, C4-M1, and O2-M1) with three additional backup channels (F3-

M2, C3-M2, and O1-M2), two EOG channels, and a chin-EMG channel4. However, it has been 

reported that using all these recommended channels might not be necessary for accurate 
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sleep staging as other derivations will only lead to slightly different results in sleep stage 

scoring19,20. 

Table 3. The common characteristics of sleep stages4,8.   

Sleep Stage Characterized by Clarification 

Wake 

Alpha rhythm  Sinusoidal 8–13 Hz activity in EEG 

Eye blinking Vertical eye movements at a frequency range of 0.5–2 Hz 

High muscle tone High chin EMG activity  

N1 

LAMF activity LAMF EEG activity mostly at 4–7 Hz 

Slow eye movements 
Regular, sinusoidal eye movements with a deflection 

duration of over 0.5 s 

Varying muscle tone 
Chin EMG activity varies but is generally lower than during 

wake 

N2 

K complexes A sharp wave with both negative and positive components  

Sleep spindles A train of sinusoidal waves (11–16 Hz) with a duration >0.5 s 

Low EOG, varying EMG 
Usually minimal eye movements. Chin EMG activity varies 

but is usually lower than during wake 

N3 

Slow-wave activity Slow waves (0.5–2 Hz) with an amplitude >75 μV 

No eye movements 
Usually, no visible eye movements and the EOG only 

displays the same frequencies as the EEG 

Low EMG  Chin EMG activity is usually the lowest of all NREM stages 

REM 

Rapid eye movements 
Irregular, sharp eye movements with a deflection duration 

<0.5 s 

Low chin muscle tone EMG activity at the lowest level of all sleep stages 

Transient muscle activity 
Short irregular bursts of EMG activity usually with duration 

<0.25 s  

Sawtooth waves Trains of triangular, serrated, 2–6 Hz waves  

ECG=electrocardiography, EEG=electroencephalography, EMG=electromyography, 

EOG=electrooculography, LAMF=Low-amplitude mixed-frequency, NREM=non-rapid eye 

movement,  PSG=polysomnography,  REM=rapid eye movement 
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The sleep staging process is currently only possible from type I and type II PSGs and the sleep 

architecture remains unknown with other types of sleep recordings. This inhibits using type 

III and IV recording devices when diagnosing most sleep disorders, especially in complex 

situations with several comorbidities. The self-applied type III recordings are most often used 

in diagnosing OSA as the respiratory events during the night can mostly be identified without 

the sleep staging. Type III devices are even the preferred diagnostic method for OSA in some 

healthcare systems as they are simpler and allow the patient to sleep at home; decreasing 

costs and increasing patient comfort21,22. However, the lack of sleep staging and EEG 

recording leads to an unreliable estimation of OSA severity since some respiratory events 

require EEG-based arousal detection to be accurately detected23. In addition, the total sleep 

time is important for accurate estimation of OSA severity and if the total recording time is 

used instead of the total sleep time, OSA severity can be significantly underestimated23. Still, 

the same thresholds are used for defining the OSA severity and choosing the patients for 

receiving health insurance- or government-subsidized treatment regardless of the diagnostic 

device type24,25. In addition, the identification of more specific conditions, such as REM-

related OSA, cannot be done without sleep staging. Finally, differential diagnosis when 

multiple sleep disorders are suspected is impossible without sleep staging. Therefore, even a 

simple assessment of sleep architecture would be highly beneficial in home-based 

measurements. 

Self-applicable electrode sets and wearable EEG devices already exist for measuring EEG at 

home26–30, 31. These do not require any input from a sleep technologist to set up, aside from 

possibly providing instructions. They usually measure EEG from the forehead area instead of 

the crown typically done in 10-20 derived systems (Figure 1). For example, a screen-printed 

self-applicable electrode set has been successfully used in identifying sleep stages with a low 
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failure rate and high correspondence to type I PSG20,30. As the electrode set enables good 

quality measurements without the need for any skin preparation, it would be well suited for 

self-applied home measurements32. However, these devices still require manual sleep stage 

scoring. In addition, since these devices use non-standard electrode placements, they require 

rigorous validation before they can be adopted for clinical use. This is because the forehead 

EEG signals collected from non-standard locations may not contain exactly the same 

information as signals from the 10-20 system; thus the standard scoring rules may not be 

applicable as such without adjustments.  

The AASM also considers peripheral arterial tonometry (PAT) devices acceptable for 

estimating sleep time and for the identification of respiratory events4. At least one such 

device, Watch PAT, is on the market although the accuracy of the device is not on par with 

standard HSAT methods33–36. 

Recently, there has been an increasing number of consumer-grade wearable devices for 

assessing sleep quality. These include devices such as wristbands, smartwatches, and rings 

for sleep tracking. Despite having suffered from low reliability compared to type I PSG during 

disordered sleep37, there may be potential to enable simple and comfortable assessment of 

sleep architecture in the future. However, rigorous clinical validation and appropriate medical 

approval processes are certainly needed before any of these can be adapted to diagnostic 

practices.   

With the advancement of machine learning methodology, different solutions capable of 

identifying sleep stages from simple measurements have been introduced. Machine learning 

methods have enabled highly accurate sleep staging even based on a single frontal EEG 

channel, with epoch-by-epoch accuracies as high as 83%38–41. In comparison, the inter scorer 
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agreement in the AASM inter scorer reliability program was reported to be 82.6%42. 

Therefore, these machine learning-based models seem to be already comparable to expert 

manual scoring. Similar approaches have also been able to provide an estimate of the sleep 

architecture based on simpler surrogate measurements. For example, ECG measurement has 

been successfully used in differentiating between sleep and wakefulness43–45. Even simpler 

solutions may be used; for example, a photoplethysmogram (PPG) measured with a pulse 

oximeter has been shown to be a viable option46–49. With deep learning applied to PPG, it has 

been shown that differentiating between the individual sleep stages is possible with a 

moderate agreement to manual scoring of PSG (64.1%), and good agreement in 

differentiating between NREM, REM, and wakefulness (80.1%)50 (Figure 2A). The PPG-based 

sleep staging could be extremely useful, even if not as accurate as EEG-based sleep staging 

since it only requires a simple pulse oximeter, which is a cheap, easy-to-use, and reliable 

sensor that is already integrated into all type I-III recording devices. In addition, it is 

completely non-invasive and causes minimal disruption to sleep and thus would be highly 

useful for reduced recording setups such as type III or type IV recordings. Therefore, 

comparing PPG sleep staging accuracy to the accuracy of full PSG setup may not be always 

relevant as it would be only used in situations where EEG recording is not available. 

The future of sleep recording at home certainly lies in implementing simple measurement 

devices capable of identifying sleep stages. Whenever a sensitive and accurate measurement 

is required, the self-applicable electrode sets would be the most viable option due to their 

simple placement and easy comparison to standard EEG measurements. Consumer-grade 

wearable devices have high potential but are currently not ready for use in a diagnostic setting 

before rigorous clinical validation and medical approval process. Wearable devices would 

provide an even simpler setup compared to single-use self-applicable electrode sets and 
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would enable monitoring over consecutive nights. While they may be more prone to failed 

measurements and poor placement, long-term monitoring could make up for these 

limitations. Finally, whenever the information on the total sleep time and a rough division to 

NREM/REM/wakefulness are sufficient, the surrogate measures to EEG for sleep staging are 

the most viable option. For example, PPG is already recorded during practically all home-

based sleep measurements and would not require any additional sensors to enable 

differentiation of sleep stages.  

Most sleep analysis software, such as Noxturnal (Nox system, Nox Medical, Iceland), RemLogic 

(Embla/Embletta systems, Natus, USA), and Sleepware 3G (Philips Alice system, Philips, 

Netherlands), also allow automatic sleep staging and respiratory event scoring. However, the 

accuracy of these methods varies and in most cases is not thoroughly tested or even reported 

at all. Therefore, the automatic scoring methods provided by the sleep scoring software 

cannot be considered reliable for clinical use without manual correction. In addition, the 

position of AASM is still that diagnosis and treatment decisions cannot be only based on 

automatic methods or artificial intelligence-based algorithms and the raw data must be 

interpreted manually51,52.  

Recording and scoring of respiratory events 
 

The diagnosis of OSA is among the most common reasons for conducting a PSG as it has been 

estimated that as much as half of the adult population is afflicted by OSA according to current 

clinical standards2. OSA is a nocturnal breathing disorder characterized by frequent 

obstructions in the upper airways during sleep. These obstructions lead to either complete 

(apnea) or partial (hypopnea) cessations in breathing, called respiratory events4. The 

diagnosis of OSA is primarily based on the number of apnea and hypopnea events per hour 
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of sleep, called the apnea-hypopnea index (AHI), which determines the severity of OSA4. More 

precisely, OSA is diagnosed if the AHI ≥ 5 with associated signs or symptoms of sleepiness or 

if the AHI ≥ 15 even without any symptoms4,53. Therefore,  the diagnosis of OSA requires the 

detection of respiratory events from PSG signals. This process is currently done manually by 

annotating the signals using visual scoring rules, which is very time-consuming. Although most 

recording software provides initial built-in automated scoring, it is not meant for final 

diagnosis and still needs to be manually corrected and evaluated. These factors make 

respiratory event scoring currently very laborious and therefore also expensive10.   

A wide variety of automatic classification methods for the detection of OSA exist54. Most of 

these methods are not capable of scoring individual events or even estimating the AHI, 

making them unable to accurately evaluate the OSA severity54. However, recent studies have 

shown, that by using machine learning methods, an extremely accurate and fully automatic 

estimation of the AHI is possible based solely on the oxygen saturation signal55. For example, 

over 90% accuracy in OSA severity estimation with a median AHI error of <1 has been reported 

in an HSAT dataset using the 4% desaturation criteria for hypopnea scoring55 (Figure 2B).  

Similar results have also been shown with cerebrovascular disease patients and in large 

external test populations indicating good generalizability and robustness of these 

methods55,56. A further advantage of these methods is that they only require the blood oxygen 

saturation recording during the night; thus they can be easily applied to all types of PSG or 

home sleep monitoring devices as oxygen saturation is acquired with a pulse oximeter, which 

is already included in all type I-III devices. As mentioned before, the pulse oximeter is a simple 

and easy-to-use sensor that requires no calibration or set up. Therefore, the pulse oximetry-

based OSA severity estimation could be especially suitable for large-scale screening of OSA 

and in various settings of scientific research. 
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While the pulse oximetry-based methods are well suited for tasks such as large-scale 

screening for OSA, they are only able to provide estimates of the AHI and OSA severity and 

cannot be used to diagnose more specific variants of sleep apnea, e.g. central sleep apnea 

(CSA), supine dominant or isolated OSA, or REM-related OSA. Therefore, these automatic 

methods cannot be directly compared to standard manual respiratory event scoring or used 

for detailed respiratory event analysis. However, this kind of fully automatic respiratory event 

scoring based on machine learning methods has also been recently shown possible8. The 

automatic respiratory event scoring has been reported with an agreement of 88.9% (κ=0.728) 

with manual scoring, which is very close to the inter-scorer agreement reported by the AASM 

inter-scorer reliability program (93.9%, κ=0.92)8,42. Therefore, automatic machine learning-

based scoring could also be applied for comprehensive respiratory event scoring when it is 

required, with an accuracy that is near human expert scoring. One disadvantage of this 

method is that the machine learning model also requires respiratory effort and airflow signals 

in addition to the SpO2, and therefore requires a more complex recording setup8. However, 

all of these signals are relatively easy to record and are present in all type I-III sleep monitors. 

Therefore, this method could be best suited for reducing manual scoring workload for 

recording setups where more information on the respiratory events, other than their 

frequency, is needed. 

As with sleep staging and other sleep disorders, there is also considerable night-to-night 

variation in OSA severity11,13. Thus, multiple-night studies could greatly increase the accuracy 

of the OSA severity evaluation as easy-to-record signals with accompanying automatic 

analysis could be simply conducted for multiple consecutive nights with minimal additional 

cost or resources. This would simultaneously eliminate the first-night effect of sleeping with 
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an unfamiliar and uncomfortable recording setup and the random night-to-night variation in 

sleep patterns that is always present. 

Identifying arousals from sleep 
 

Arousals from sleep are defined as an abrupt shift in EEG frequencies lasting over 3 seconds4. 

Therefore, identifying these requires an EEG recording. Moreover, as the arousals are further 

differentiated to spontaneous arousals, respiratory arousals, respiratory effort-related 

arousals (RERAs), and periodic limb movement (PLM) arousals, these require additional 

measurements, i.e. breathing signals and leg EMG signals. Currently, these all are only 

included in type I and type II recordings.  

Similar to sleep staging, automatic identification of arousals has been conducted based on 

PSG recordings57–59. In 2018, there was a PhysioNet/Computing in Cardiology Challenge to 

develop an automatic arousal detection software57. The winning approach relied on deep 

learning utilizing EEG, EOG, chin EMG, RIP belt, oxygen saturation, and airflow signals and 

achieved reasonable accuracy58. Besides requiring a comprehensive measurement setup from 

a full PSG, the arousal identification only relied on classifying 10-second epochs into arousal 

or not arousal instead of accurately identifying the actual starting and ending times of the 

arousals. Aside from these, arousal identification has been conducted from ECG recording 

with promising results59. Therefore, there is potential to conduct automatic detection of 

arousals in a clinical setting both from signals recorded during a PSG and from simpler 

measurements such as PPG. Arousal identification would be crucial to assess sleep 

fragmentation and in the diagnosis of OSA, as this would allow the identification of hypopneas 

related to arousals. However, more research is warranted before the simpler approaches can 

be applied in routine clinical practice as scoring of arousals suffers from a relatively low 
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agreement even between manual scorers evidenced by reported arousal index intraclass 

correlation of as low as 0.5460,61. 

 

Identifying movements, snoring, and cardiac events 
 

Detecting limb movement events is essential for assessing the presence of periodic limb 

movements and differentiating between different arousals types. Automatic detection of 

limb movements has also been successfully conducted from leg EMGs relying on deep 

learning62. However, leg EMG recordings are not consistently included in home-based 

measurements. Thus, AI-based algorithms could be the solution for identifying limb 

movements from surrogate measures. Potential alternatives include activity-based 

measurements and position sensors. 

Identifying snoring is mostly done based on audio recordings which can also be conducted 

automatically63,64. Implementing a simple recording of audio to home sleep recordings would 

be straightforward and could be done, for example, with an ambient microphone or a 

microphone placed over the trachea. These could be accompanied by automatic analyses to 

easily assess the snoring tendency, which is often also related to OSA. However, in 

microphone-based snoring detection, it can sometimes be difficult to isolate background 

noise or bed partner’s snoring from the recording which complicates accurate snoring 

detection. 

The detection of cardiac events conventionally relies on the ECG signal. However, the PPG has 

immense potential to function as a surrogate for ECG65–68. Even though PPG is not a direct 

measure of the electrical functioning of the heart, the pulse rate and pulse rate variability 
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metrics correlate well with those derived from ECG66. Furthermore, computational solutions 

for PPG-based atrial fibrillation, ectopic complexes, and extrasystole detection exist65,67,68. 

However, these methods warrant further studies on their usability as a part of routine sleep 

recordings. 

 

The limitations of home recordings 
 

Home sleep recordings have certain limitations that may be difficult to completely overcome 

and therefore likely cannot fully replace in-lab PSG. For example, in-lab PSG often 

incorporates a video recording of the night. This is especially crucial when diagnosing 

disorders such as parasomnias, behavioral night-time disorders, or nocturnal epilepsy. 

Diagnosing these in a home environment would either require a portable night-vision video 

recording device with sufficient quality or other surrogate measurements capable of reliably 

assessing nighttime behaviors. These could potentially include sonar-based solutions or 

accelerometers directly measuring the activity or movement of the individual with 

accompanying algorithms for automatic analysis. Moreover, some sleep studies, such as 

multiple sleep latency test or maintenance of wakefulness test cannot be conducted at home 

in their current form. Therefore, an accurate objective assessment of daytime sleepiness still 

requires an in-lab recording. Finally, many devices are still relatively difficult to use. Thus, 

more development work needs to still be conducted to make them suitable for all individuals 

regardless of factors such as mental status or age. 
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Conclusions 

Sleep disorders are a global health burden and more efficient diagnostic practices are sorely 

needed. Home sleep recordings with accompanying artificial intelligence-based automatic 

analysis approaches have immense potential to resolve the increasing patient inflows. The 

specific conclusions related to the future of home sleep recordings are:  

1. AI-based sleep staging and OSA severity estimation are already highly accurate and 

nearly on par with manual scoring. Thus, night-to-night variation, the first-night effect, 

and incorrect use of devices already cause greater uncertainty in the diagnosis than 

the current automatic analysis methods. As such, the accuracy of these methods is no 

longer the limiting issue for their adoption and lack of understanding and trust likely 

play a much greater role. However, these trust concerns are not entirely unfounded 

as there is a clear lack of large-scale multi-center validation studies which are certainly 

needed before adopting any automatic method for general clinical use. 

2. Once validated, the automatic analysis methods could considerably improve the 

diagnostics of sleep and sleep disorders as the automatic methods would not only 

reduce the workload related to manual scoring but also make the analysis more 

consistent and improve the overall accuracy and ease of comparison. 

3. Simpler recording setups would be highly useful for screening and assisting in the 

diagnosis of many sleep disorders. Cheap and easy-to-use recording devices could 

increase the availability of recordings and enable diagnosis and follow-up of treatment 

for more individuals. Simpler measurement setups would simultaneously be more 

comfortable and impose a lesser disruption to sleep. Thus, they could allow obtaining 

a more reliable representation of natural sleep.  
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4. Combining automatic AI-based analysis and simple screening devices would enable 

simple and cost-efficient monitoring over multiple consecutive nights. This would 

minimize the first-night effect and the effect of night-to-night variability and release 

the limited resources of sleep specialists from manual scoring to other tasks. 

5. Based on the current research, we consider that pulse oximeter recording including 

the PPG and SpO2 has the most potential for simple and cost-efficient yet accurate 

screening of sleep disorders. A pulse oximeter is cheap and easy-to-use, requires no 

calibration or difficult setup, and can be used multiple times with no preparation or a 

need to replace single-use parts such as electrodes. Furthermore, it is fully non-

invasive and causes minimal disruption to sleep. These factors make it an ideal sensor 

for continuous long-term and multi-night recordings. Finally, and most importantly, 

the measured signals (oxygen saturation and PPG) are extremely information-rich and 

can be alone used to automatically evaluate sleep stages and the severity of OSA with 

high accuracy (Figure 1)50,55. 

6. For more complex sleep disorders and specialized analysis, simplified self-applied 

recording setups with reduced EEG, pulse oximetry, leg EMG, and respiratory 

measurements could be used. The signals recorded by the simplified devices could still 

be scored using automatic machine learning-based methods. Traditional type I PSG 

could be reserved for only those cases which cannot be reliably studied and diagnosed 

otherwise. 
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Figure captions 

Figure 1: Forehead/face (grey) is a common area to attach self-applicable electrodes used in 

wearable EEG devices20,29,31 (A). The 10-20 system-derived electrode places are used in 

conventional in-lab polysomnography (B). 

 

Figure 2: Examples of automatic pulse oximetry-based sleep stage classification50 (A) and 

apnea-hypopnea index (AHI) estimation55 (B) and how they correspond to expert manual 

scoring. The sleep stages and AHI were automatically determined from the 

photoplethysmogram (PPG) and the blood oxygen saturation (SpO2) signals, respectively. As 

such, these results highlight what can be already achieved utilizing only a single probe- pulse 

oximetry measurement instead of the full polysomnography setup.  

 

 


