PUBLICATIONS
2024
Ferretti, D., Islind, A. S., Ólafsdóttir, K. A., Sigurdardottir, S., Jóhannsdóttir, K. R., Hedner, J., … & Arnardottir, E. S. (2024). Feasibility and usability of three consecutive nights with self‐applied, home polysomnography. Journal of Sleep Research, e14286.
Fridgeirsdottir, K. Y., Ólafsdóttir, K. A., Islind, A. S., Leppänen, T., Arnardottir, E. S., & Saavedra, J. M. (2024). The role of physical activity on obstructive sleep apnea severity and hypoxic load, and the mismatch between subjective and objective physical activity assessments. Journal of Sleep Research, e14195.
Penzel, T. (2024) Using the gold mine of sleep data recorded to increase our understanding of sleep. Sleep.
Pires, G. N., Arnardóttir, E. S., Bailly, S., & McNicholas, W. T. (2024). Guidelines for the development, performance evaluation and validation of new sleep technologies (DEVSleepTech guidelines)–a protocol for a Delphi consensus study. Journal of Sleep Research, e14163.
2023
Biedebach, L., Óskarsdóttir, M., Arnardóttir, E.S., Sigurdardóttir, S., Clausen, M. V., Sigurdardóttir, S. Þ., Serwatko, M. & Islind, A.S. (2023) Anomaly detection in sleep: detecting mouth breathing in children. Data Mining and Knowledge Discovery.
Biedebach, L., Óskarsdóttir, M., Arnardottir, E.S., & Islind, A.S. (2023) Two Sides of the Same Pillow: Unfolding the Relationship between Objective and Subjective Sleep Quality with Unsupervised Learning. ICIS 2023 Proceedings. 20.
Biedebach, L., Rusanen, M., Þórðarson, B., Arnadóttir, E. S., Óskarsdóttir, M., Nikkonen, S., … & Islind, A. S. (2023). Towards a Deeper Understanding of Sleep Stages through their Representation in the Latent Space of Variational Autoencoders. 56th Hawaii International Conference on System Sciences, 3111-3121.
McNicholas, W. T., Arnardottir, E. S., Leppänen, T., Schiza, S., & Randerath, W. (2023). CPAP therapy for obstructive sleep apnoea: persisting challenges in outcome assessment. European Respiratory Journal, 62(1).
McNicholas, W.T. & Korkalainen, H. (2023). Translation of obstructive sleep apnea pathophysiology and phenotypes to personalized treatment: a narrative review. Frontiers in Neurology 14:1239016.
Piccini, J., August, E., Óskarsdóttir, M., Arnardóttir, E.S. (2023). Using the Electrodermal Activity Signal and Machine Learning for Diagnosing Sleep . Frontiers in Sleep, 2:1127697.
Pires, G. N., Arnardóttir, E. S., Islind, A. S., Leppänen, T., & McNicholas, W. T. (2023). Consumer sleep technology for the screening of obstructive sleep apnea and snoring: current status and a protocol for a systematic review and meta‐analysis of diagnostic test accuracy. Journal of Sleep Research, e13819.
Rusanen, M., Huttunen, R., Korkalainen, H., Myllymaa, S., Töyräs, J., Myllymaa, K., … & Kainulainen, S. (2023). Generalizable Deep Learning-based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordings. IEEE Journal of Biomedical and Health Informatics.
Sturludóttir, J.E., Sigurðardóttir, S., Serwatko, M., Arnardóttir, E.S., Hrubos-Strøm, H., Clausen, M.V., Sigurðardóttir, S., Óskarsdóttir, M. and Islind, A.S., Deep learning for sleep analysis on children with sleep-disordered breathing: Automatic detection of mouth breathing events. Frontiers in Sleep, 2, p.3.
Sveinbjarnarson, B. F., Schmitz, L., Arnardottir, E. S. & Islind, A. S. (2023). The Sleep Revolution Platform: a Dynamic Data Source Pipeline and Digital Platform Architecture for Complex Sleep Data. Current Sleep Medicine Reports. 1-10.
Þórðarson, B., Islind, A. S., Arnadóttir, E. S., & Óskarsdóttir, M. (2023).Exploration of Sleep Events in the Latent Space of Variational Autoencoders on a Breath-by-Breath Basis. 56th Hawaii International Conference on System Sciences, 3091-3101.
2022
Arnardottir, E. S., Islind, A. S., Óskarsdóttir, M., Ólafsdóttir, K. A., August, E., Jónasdóttir, L., … & Sleep Revolution. (2022). The Sleep Revolution project: the concept and objectives. Journal of Sleep Research, 31(4), e13630.
Borsky, M., Serwatko, M., Arnardottir, E. S., & Mallett, J. (2022). Toward Sleep Study Automation: Detection Evaluation of Respiratory-Related Events. IEEE Journal of Biomedical and Health Informatics, 26(7), 3418-3426.
Ebrahimian, S., Nahvi, A., Tashakori, M., Salmanzadeh, H., Mohseni, O., & Leppänen, T. (2022). Multi-Level Classification of Driver Drowsiness by Simultaneous Analysis of ECG and Respiration Signals Using Deep Neural Networks. International journal of environmental research and public health, 19(17), 10736.
Ebrahimian, S., Sillanmäki, S., Hietakoste, S., Duce, B., Kulkas, A., Töyräs, J., … & Kainulainen, S. (2022). Inter-sleep stage variations in corrected QT interval differ between obstructive sleep apnea patients with and without stroke history. Plos one, 17(12).
Hietakoste, S., Karhu, T., Sillanmäki, S., Bailón, R., Penzel, T., Töyräs, J., … & Kainulainen, S. (2022). Obstructive sleep apnoea-related respiratory events and desaturation severity are associated with the cardiac response. ERJ Open Research, 8(4).
Huttunen, R., Leppänen, T., Duce, B., Arnardottir, E. S., Nikkonen, S., Myllymaa, S., … & Korkalainen, H. (2022). A Comparison of Signal Combinations for Deep Learning-Based Simultaneous Sleep Staging and Respiratory Event Detection. IEEE Transactions on Biomedical Engineering.
Kalevo, L., Miettinen, T., Leino, A., Westeren-Punnonen, S., Sahlman, J., Mervaala, E., … & Myllymaa, K. (2022). Self-Applied Electrode Set Provides a Clinically Feasible Solution Enabling EEG Recording in Home Sleep Apnea Testing. IEEE Access, 10, 60633-60642.
Karhu, T., Leppänen, T., Korkalainen, H., Myllymaa, S., Duce, B., Töyräs, J., & Nikkonen, S. (2022). Desaturation event scoring criteria affect the perceived severity of nocturnal hypoxic load. Sleep Medicine, 100, 479-486.
Karhu, T., Leppänen, T., Töyräs, J., Oksenberg, A., Myllymaa, S., & Nikkonen, S. (2022). ABOSA–Freely available automatic blood oxygen saturation signal analysis software: Structure and validation. Computer Methods and Programs in Biomedicine, 226, 107120.
Leino, A., Korkalainen, H., Kalevo, L., Nikkonen, S., Kainulainen, S., Ryan, A., … & Myllymaa, K. (2022). Deep learning enables accurate automatic sleep staging based on ambulatory forehead EEG. IEEE Access, 10, 26554-26566.
Leppänen, T., Kainulainen, S., Korkalainen, H., Sillanmäki, S., Kulkas, A., Töyräs, J., & Nikkonen, S. (2022). Pulse Oximetry: The Working Principle, Signal Formation, and Applications. In Advances in the Diagnosis and Treatment of Sleep Apnea (pp. 205-218). Springer, Cham.
Leppänen, T., Varon, C., de Zambotti, M., & Myllymaa, S. (2022). Machine Learning and Wearable Technology in Sleep Medicine. Frontiers in Digital Health, 4.
Mendonça, F., Mostafa, S. S., Gupta, A., Arnardottir, E. S., Leppänen, T., Morgado-Dias, F., & Ravelo-García, A. G. (2022). A-phase index: an alternative view for sleep stability analysis based on automatic detection of the A-phases from the cyclic alternating pattern. Sleep.
Nikkonen, S., Korkalainen, H., Töyräs, J., & Leppänen, T. (2022). STAR sleep recording export software for automatic export and anonymization of sleep studies. Scientific Reports, 12(1), 1-7.
Oksenberg, A., & Leppänen, T. (2022). Duration of respiratory events in obstructive sleep apnea: Factors influencing the duration of respiratory events. Sleep Medicine Reviews, 101729.
Oksenberg, A., & Leppänen, T. (2022). Duration of respiratory events in obstructive sleep apnea: In search of paradoxical results. Sleep Medicine Reviews, 101728.
Pahari, P., Korkalainen, H., Karhu, T., Rissanen, M., Arnardottir, E. S., Hrubos‐Strøm, H., … & Nikkonen, S. (2022). Obstructive sleep apnea‐related intermittent hypoxaemia is associated with impaired vigilance. Journal of Sleep Research.
Schmitz, L., Sveinbjarnarson, B. F., Gunnarsson, G. N, Davíðsson, Ó. A., Davíðsson, Þ. B., Arnardóttir, E. S., Óskarsdóttir, M. & Islind, A. S. (2022). Towards a Digital Sleep Diary Standard. In proceeding of 28th Americas Conference on Information Systems (AMCIS). Minneapolis, USA.
Sigurdardottir, F. D., Øverby, C. T., Nikkonen, S., Karhu, T., Dammen, T., Nordhus, I. H., … & Hrubos‐Strøm, H. (2022). Novel oxygen desaturation parameters are associated with cardiac troponin I: Data from the Akershus Sleep Apnea Project. Journal of Sleep Research, e13581.
Sillanmäki, S., Lipponen, J. A., Korkalainen, H., Kulkas, A., Leppänen, T., Nikkonen, S., … & Kainulainen, S. (2022). QTc prolongation is associated with severe desaturations in stroke patients with sleep apnea. BMC Pulmonary Medicine, 22(1), 1-10.
2021
Arnardottir, E. S., Islind, A. S., & Óskarsdóttir, M. (2021). The Future of Sleep Measurements: A Review and Perspective. Sleep Medicine Clinics, 16(3), 447-464.
Arnardottir, E. S., Korkalainen, H., Nikkonen, S., Kainulainen, S., Dwivedi, A. K., Myllymaa, S., … & Töyräs, J. (2021). Preface: Improving Sleep Measurements for the Future xiii.
Jóhannsdóttir, K. R., Ferretti, D., Árnadóttir, B. S., & Jónsdóttir, M. K. (2021). Objective Measures of Cognitive Performance in Sleep Disorder Research. Measuring Sleep, An Issue of Sleep Medicine Clinics, E-Book, 16(4), 575-593.
Korkalainen, H., Nikkonen, S., Kainulainen, S., Dwivedi, A. K., Myllymaa, S., Leppänen, T., & Töyräs, J. (2021). Self-Applied Home Sleep Recordings: The Future of Sleep Medicine. Sleep Medicine Clinics, 16(4), 545-556.
Leppänen, T., Myllymaa, S., Kulkas, A., & Töyräs, J. (2021). Beyond the apnea–hypopnea index: alternative diagnostic parameters and machine learning solutions for estimation of sleep apnea severity. Sleep, 44(9).
Pevernagie, D., Bauters, F. A., Hertegonne K. (2021). The Role of Patient-Reported Outcomes in Sleep Measurements. Sleep Medicine Clinics, Volume 16, Issue 4, Pages 595-606.
Pevernagie, D. (2021). Future Treatment of Sleep Disorders: Syndromic Approach Versus Management of Treatable Traits? Sleep Medicine Clinics, Volume 16, Issue 3, Pages 465-473.
Pitkänen, H., Duce, B., Leppänen, T., Kainulainen, S., Kulkas, A., Myllymaa, S., … & Korkalainen, H. (2021). Gamma power of electroencephalogram arousal is modulated by respiratory event type and severity in obstructive sleep apnea. IEEE Transactions on Biomedical Engineering, 69(4), 1417-1423.
Rusanen, M., Kainulainen, S., Korkalainen, H., Kalevo, L., Myllymaa, K., Leppänen, T., … & Myllymaa, S. (2021). Technical Performance of Textile-Based Dry Forehead Electrodes Compared With Medical-Grade Overnight Home Sleep Recordings. IEEE Access, 9, 157902-157915.
Rusanen, M., Myllymaa, S., Kalevo, L., Myllymaa, K., Töyräs, J., Leppänen, T., & Kainulainen, S. (2021). An in-laboratory comparison of FocusBand EEG device and textile electrodes against a medical-grade system and wet gel electrodes. IEEE Access, 9, 132580-132591.